Exploiting Unlabeled Data in Computer Vision

Xiaohang Zhan MMLab, The Chinese University of Hong Kong

at Tsinghua Shenzhen International Graduate School Oct. 20, 2020

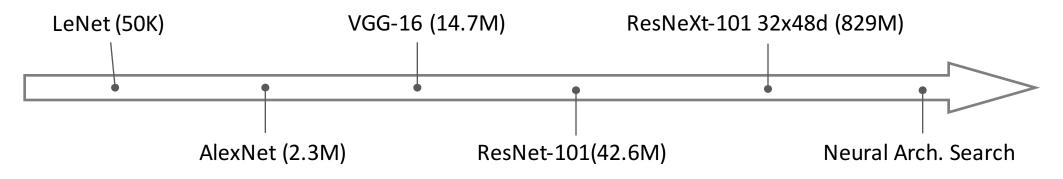
Outlines

> Why unlabeled data?

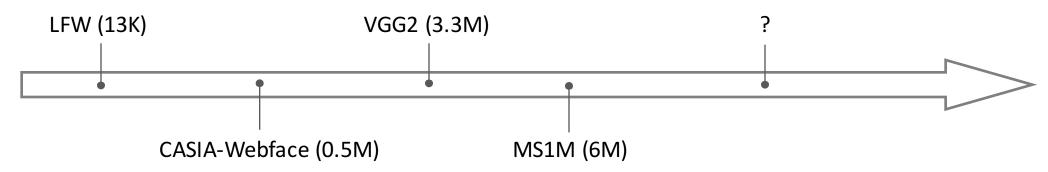
- > Supervised face clustering: a new trend
- > Unsupervised representation learning from object-centric images
- Self-supervised learning in scene understanding

Neural Networks v.s. Labeled Datasets

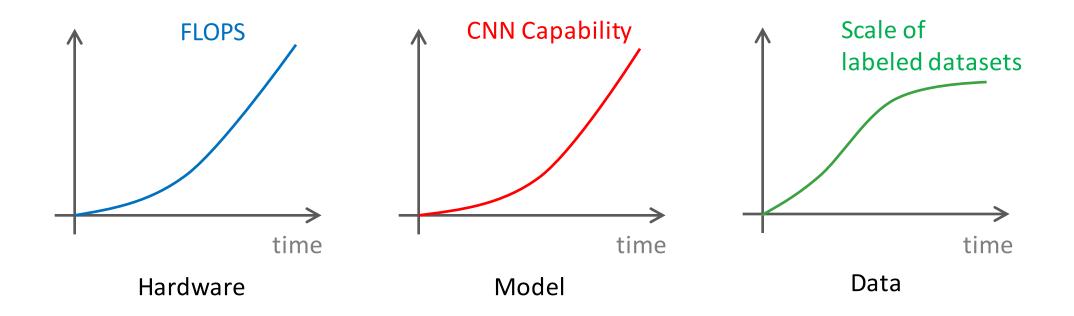
Evolution of CNN architectures (number of parameters in convolution layers)



Evolution of labeled datasets (number of images)



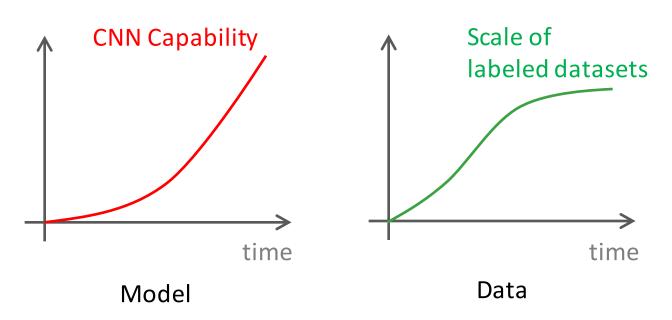
Neural Networks v.s. Labeled Datasets



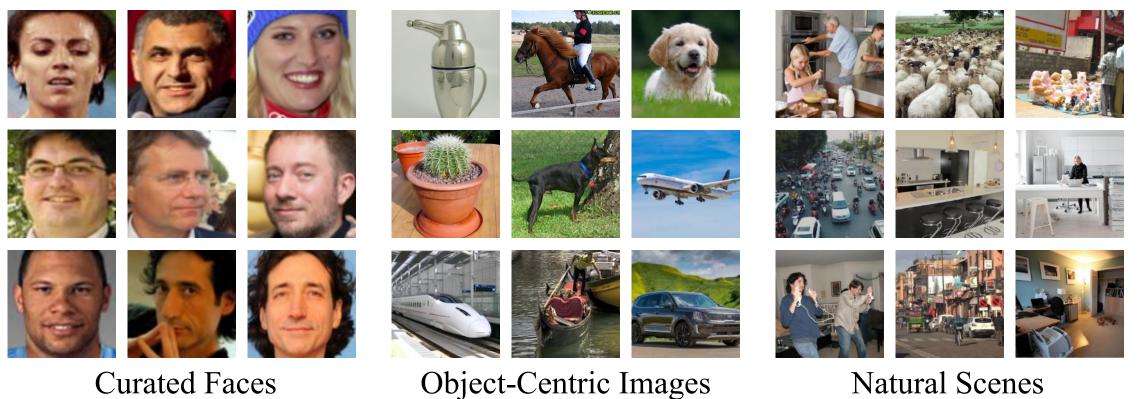
Neural Networks v.s. Labeled Datasets

Issues in labeling datasets:

- High labor cost
- Annotation noise and bias
- Low production speed (several years)

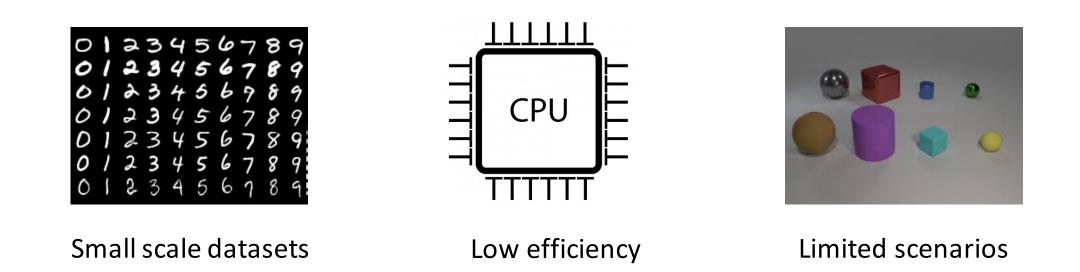


Unlabeled Data in Different Forms



Curated Faces

Conventional Unsupervised Learning



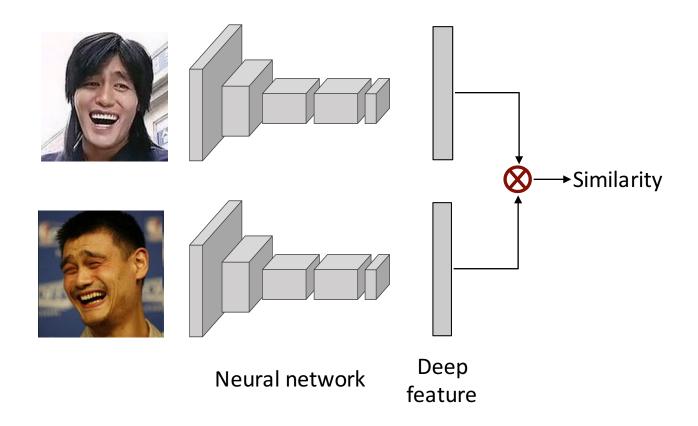
How to better leverage unlabeled data in the era of deep learning?

Outlines

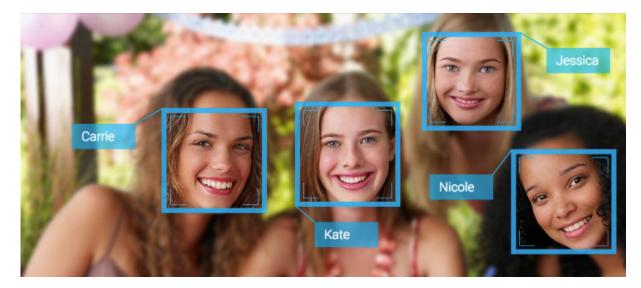
- > Why unlabeled data?
- > Supervised face clustering: a new trend
- > Unsupervised representation learning from **object-centric** images
- Self-supervised learning in scene understanding

Face Recognition

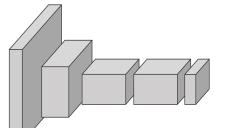
Face recognition in movies

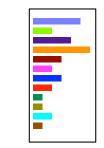


Training of Face Recognition



Labeled data





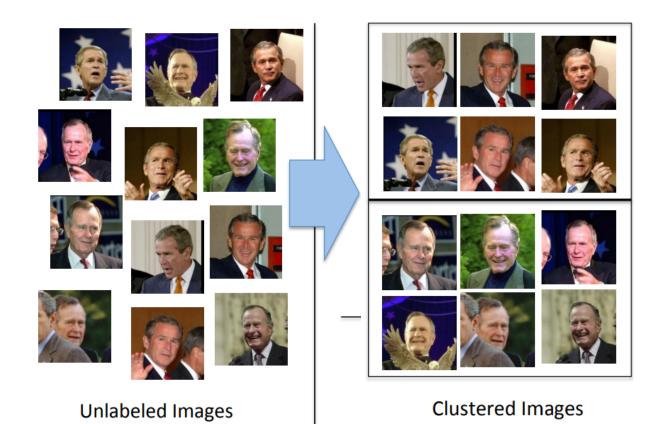
Deep feature Classifier

Big Data of Faces

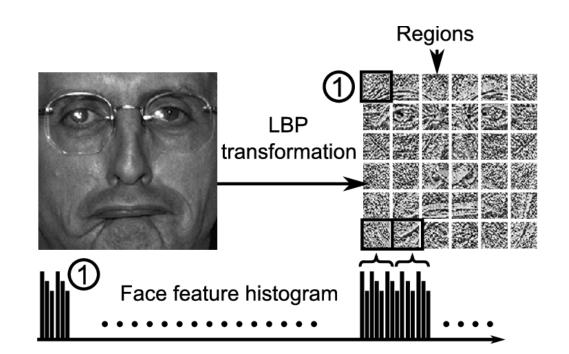
surveillance

web

Face Clustering

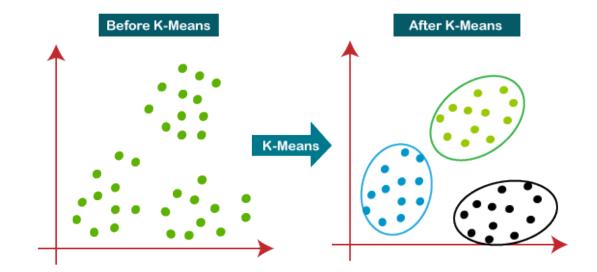


Face Clustering in Ancient Time



LBP features

- Low representability
- Vulnerable
- High dimension



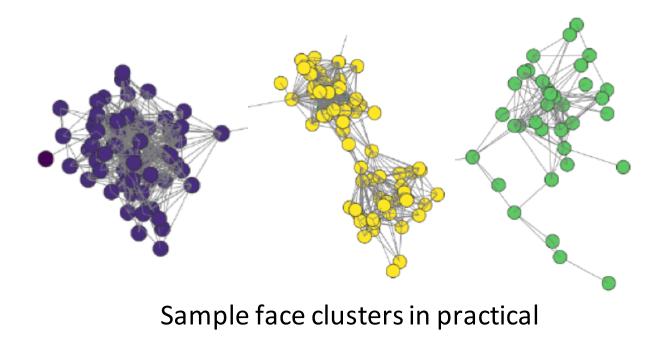
K-Means clustering

- Relying on strong
- assumptions
- High computational cost

1. Unlabeled data collected from unconstrained environments have large variations \rightarrow hand designed features are unreliable.

Challenges

2. Complicated inner-structures \rightarrow hard to use priors or assumptions



Assumptions:

- KMeans: Samples obey Gaussian distribution.
- Spectral: Clusters' size is balanced.
- DBSCAN: Clusters are dense regions.

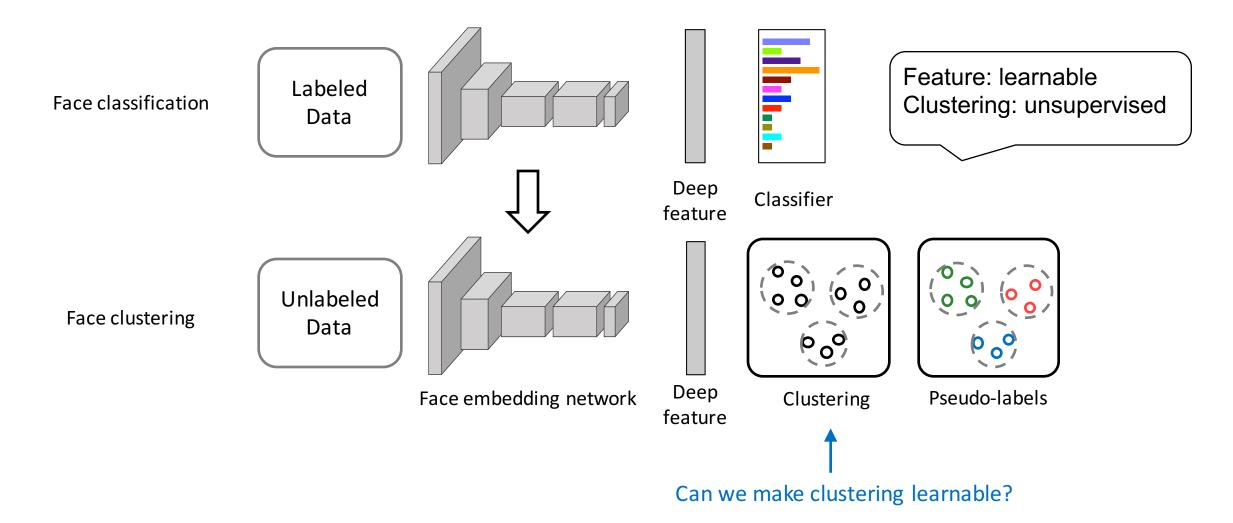
3. Large-scale clustering \rightarrow computational complexity

Datasets	Images	Identities
VGG2	3.3 M	9 К
MegaFace	4.7 M	672K
MS1M	5.8 M	85 K
Surveillance	Billion-level	Million-level

Computation Complexity:

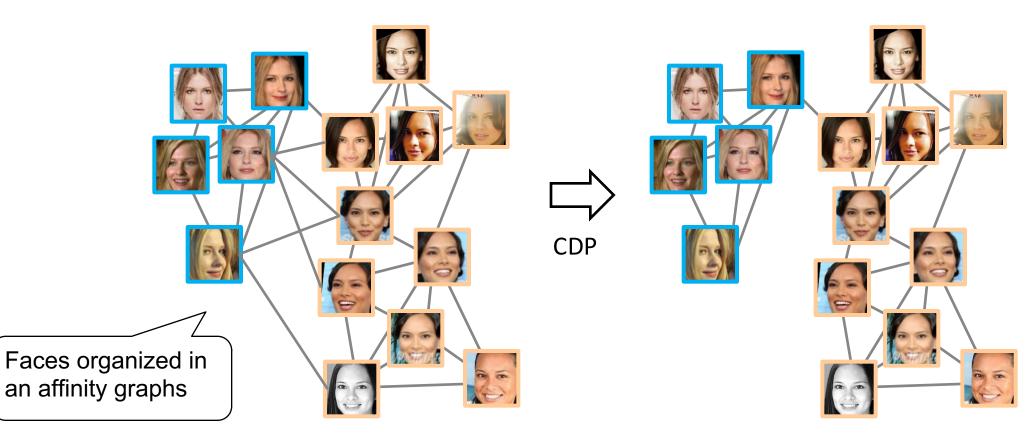
- KMeans: $O(N * Iter * K), K \in N$
- Spectral: $O(N^3)$
- DBSCAN: $O(N^2)$, or O(Nlog(N))
- HAC: $O(N^3)$

Face Clustering in Deep Learning Era



Consensus-Driven Propagation (CDP) [ECCV'18]

• **Objective**: Learning better linkages.



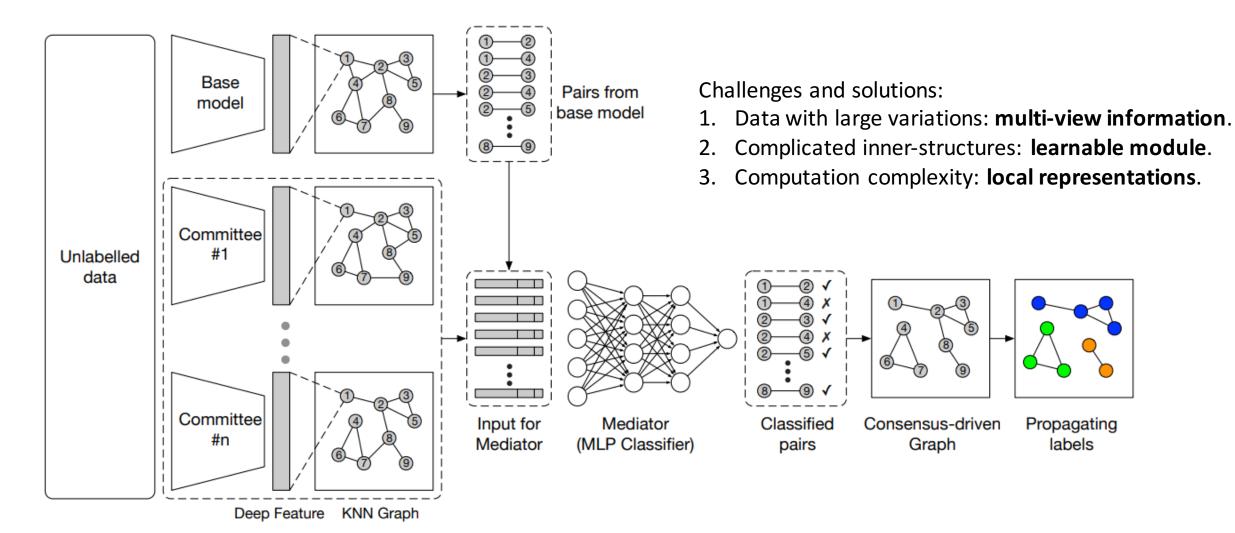
Consensus-Driven Propagation (CDP) [ECCV'18]

Consensus-driven

Graph

Propagating

labels



Consensus-Driven Propagation (CDP) [ECCV'18]

Comparison of different methods on MS1M face clustering

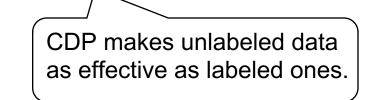
	methods	F-score (%)			Time	
		200K	600K	1.4M	600K	
	K-Means	83.5	fail	fail	fail	
	Mini-batch K-Means	88.9	84.0	fail	2266s	
	НАС	92.6	90.6	fail	61h	
	FastHAC	69.4	80.9	fail	16h	
	DBSCAN	79.0	76.2	fail	80h	
	HDBSCAN	86.1	81.5	fail	48h	> 3400x
our method	CDP (single model)	89.2	86.7	85.2	85s 🖌	
	CDP (multi model)	95.8	94.2	93.1	556s	

> 3400x faster

Effectiveness of CDP

Improvements on face recognition in MegaFace through clustering

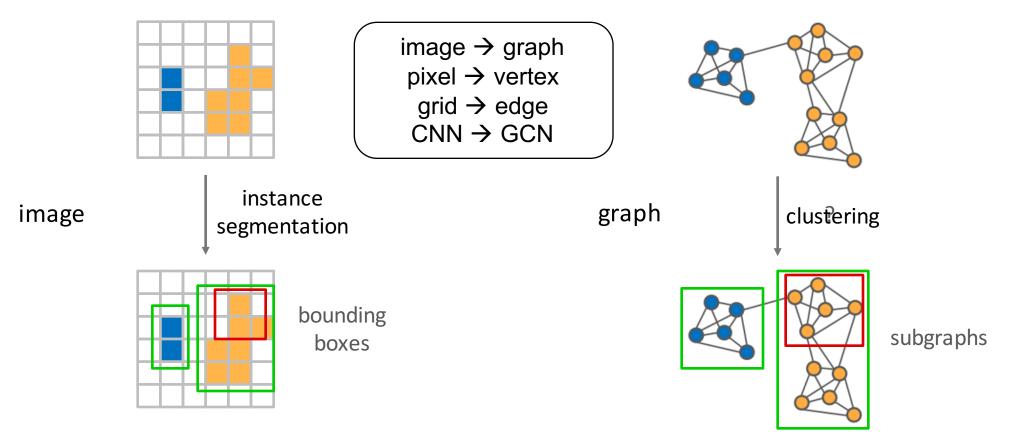
Data	Performance		
9% labeled	61.78%		
9% labeled + 91% unlabeled (HAC)	62.45%		
9% labeled + 91% unlabeled (CDP)	78.18%		
100% labeled	78.52%		



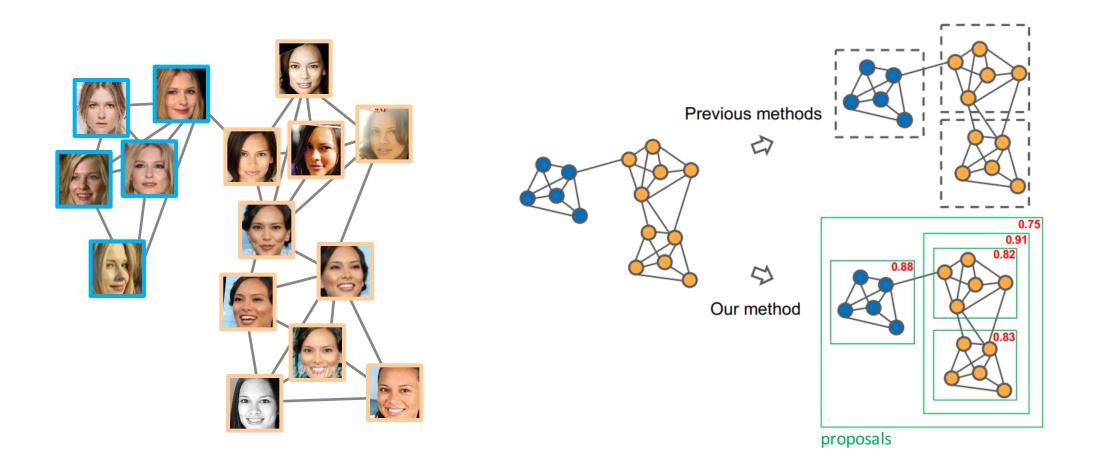
CDP as a Data Cleaner

CDP cleans out low-quality faces.

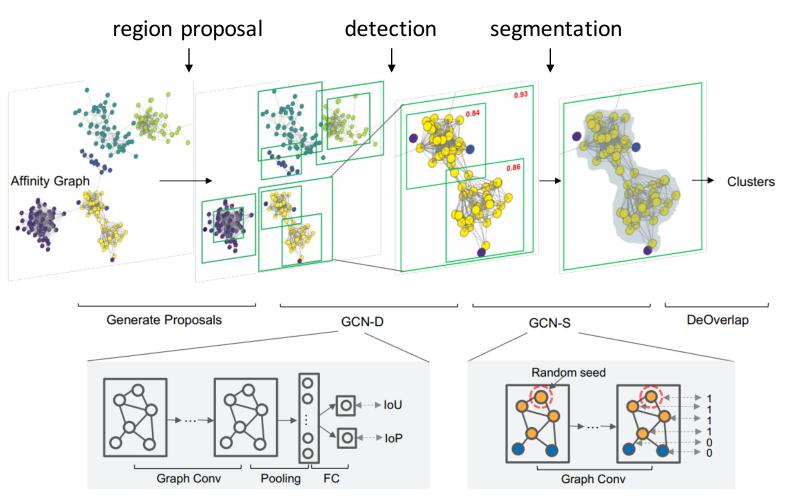
From Image to Graph



Learning to Cluster Faces on an Affinity Graph [CVPR'19 Oral]



Learning to Cluster Faces on an Affinity Graph [CVPR'19 Oral]



Face clustering as anchor-based detection

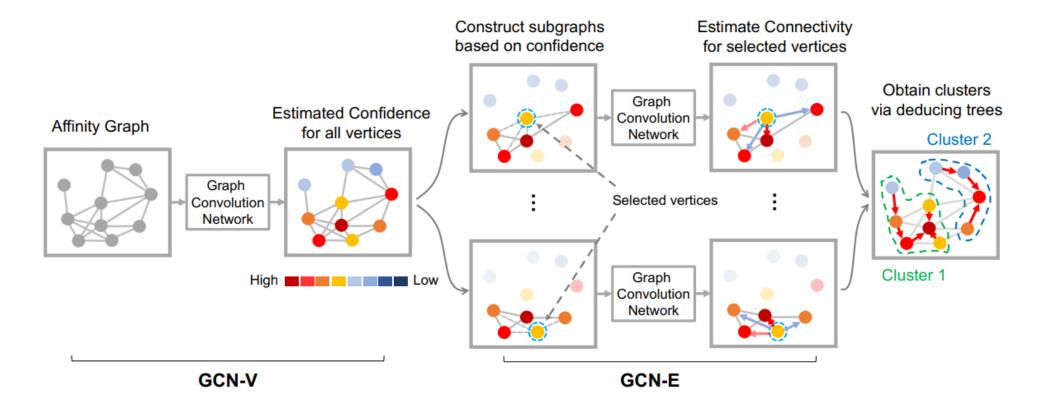
Learning to Cluster Faces on an Affinity Graph [CVPR'19 Oral]

Evaluation on MS1M

Methods	#clusters	Precision	Recall	F-score	Time		
K-Means [19]	5000	52.52	70.45	60.18	13h	-	
DBSCAN [4]	352385	72.88	42.46	53.5	100s		
HAC [24]	117392	66.84	70.01	68.39	18h		
Approximate Rank Order [1]	307265	81.1	7.3	13.34	250s		
CDP [30]	29658	80.19	70.47	75.01	350s		
GCN-D	19879	95.72	76.42	84.99	2000s	Slightly slower	
GCN-D + GCN-S	19879	98.24	75.93	85.66	2200s		
		•				-	
	Nuch stronger						

Much stronger

Learning to Cluster Faces via Confidence and Connectivity Estimation [CVPR'20]

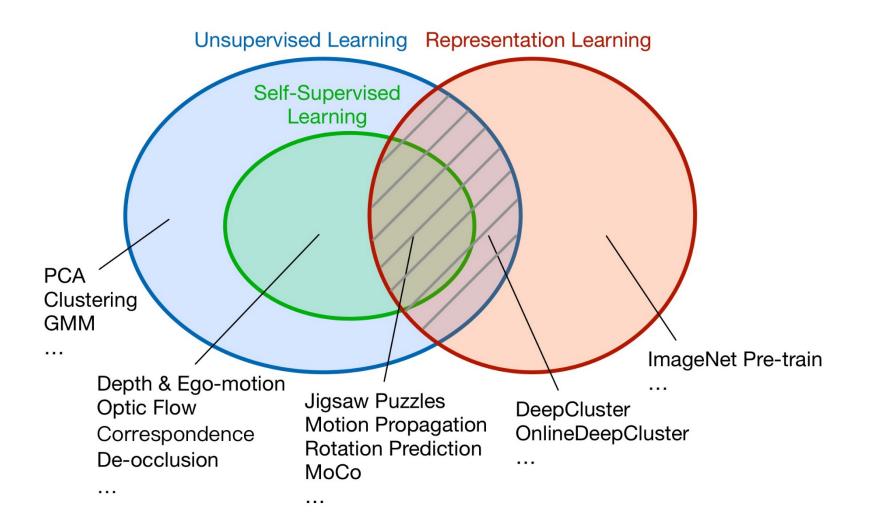


Face clustering as anchor-free detection

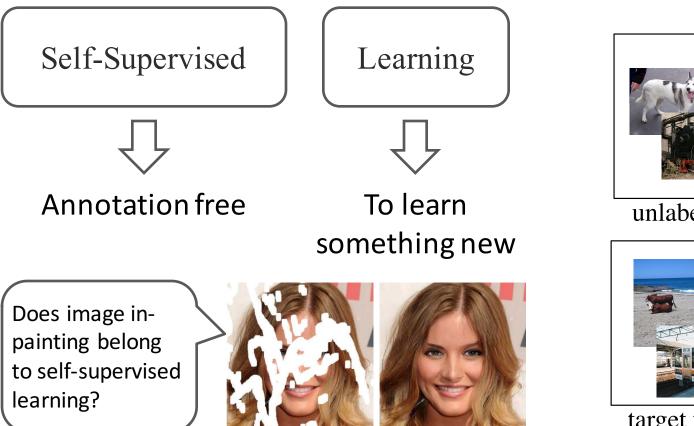
Outlines

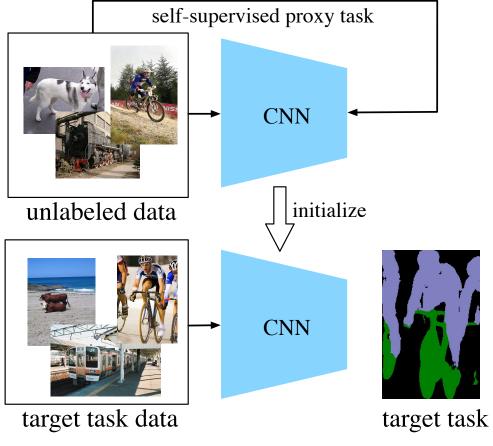
- > Why unlabeled data?
- > Supervised face clustering: a new trend
- > Unsupervised representation learning from object-centric images
- Self-supervised learning in scene understanding

What is Unsupervised Representation Learning?



What is Self-Supervised Learning (SSL)?





A typical pipeline

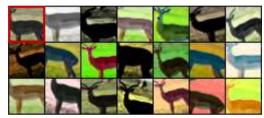
Self-Supervised Proxy/Pretext Tasks

Image Colorization

Solving Jigsaw Puzzles

Image In-painting

Rotation Prediction



Instance Discrimination

Counting

Motion prediction

Moving foreground segmentation

Motion propagation

Essence: 1. Prior

• Appearance prior

Image Colorization

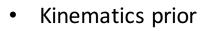
Image In-painting

• Physics prior

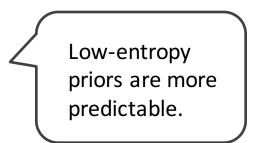
Rotation Prediction

• Motion tendency prior

Motion prediction (Fine-tuned for seg: 39.7% mIoU)



Motion propagation (Fine-tuned for seg: 44.5% mIoU)



Essence: 2. Coherence

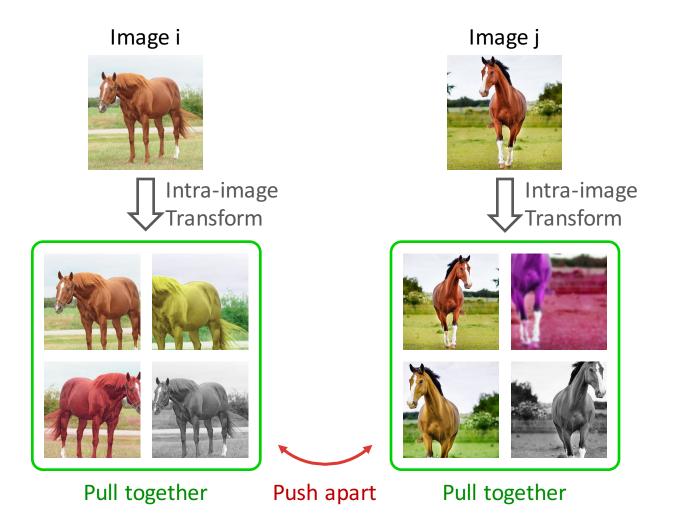
• Spatial coherence

Solving Jigsaw Puzzles

• Temporal coherence

Temporal order verification

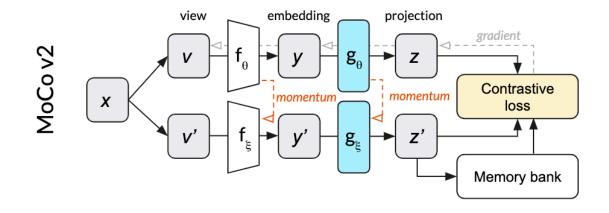
Essence: 3. Structure of Data

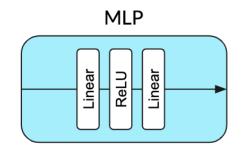


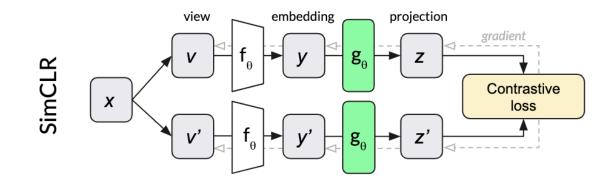
Instance Discrimination (Contrastive Learning)

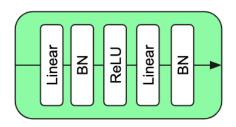
- NIPD
- CPC
- MoCo
- SimCLR
- ...

Typical Contrastive-Based SSL

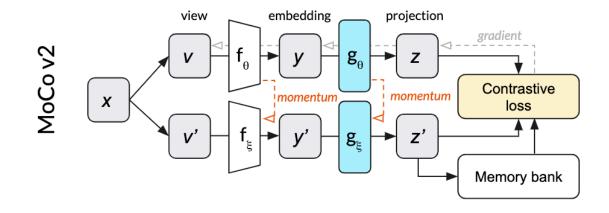


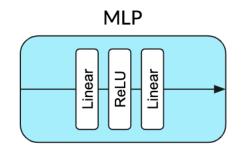


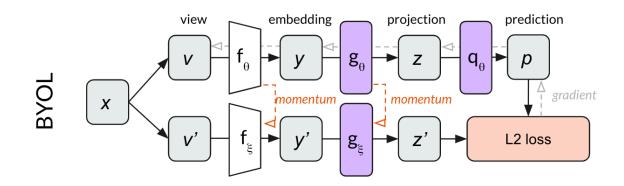


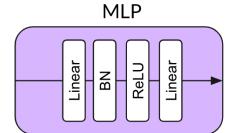


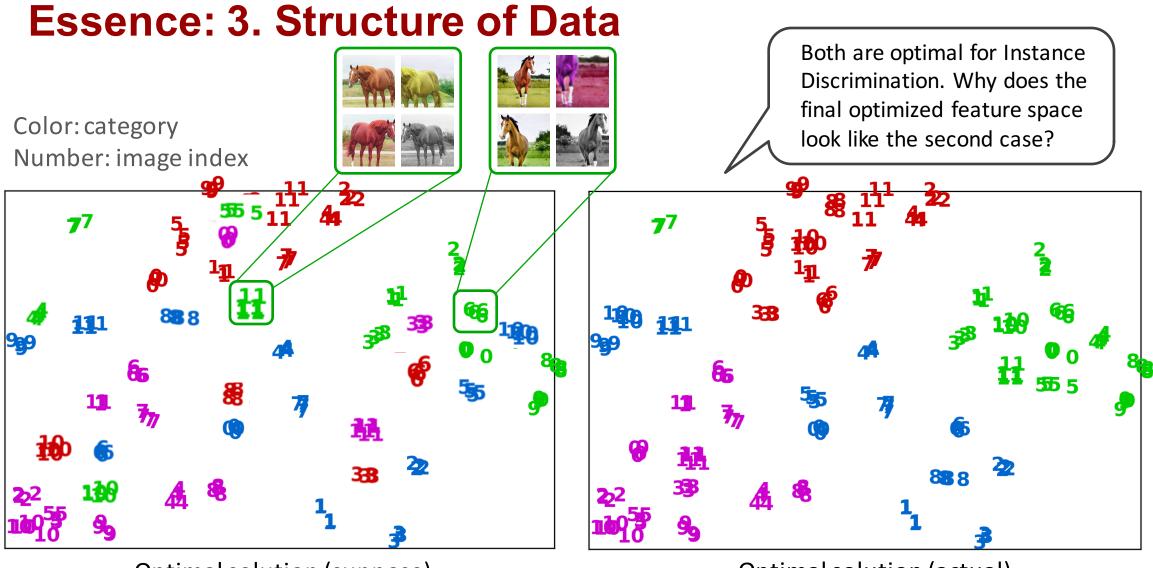
Typical Contrastive-Based SSL







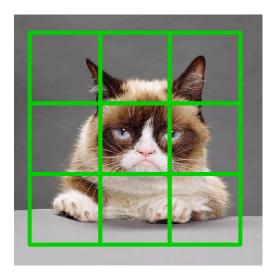


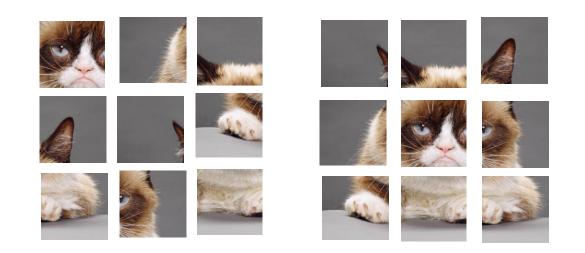


Optimal solution (suppose)

Optimal solution (actual)

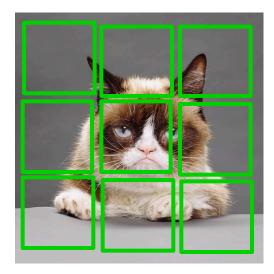
• Continuity

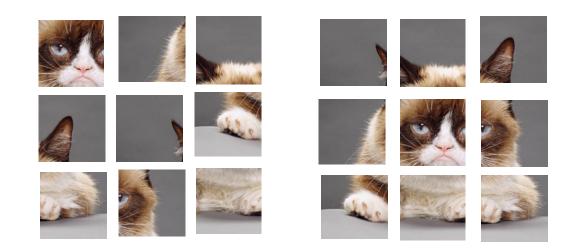




Solving Jigsaw Puzzles

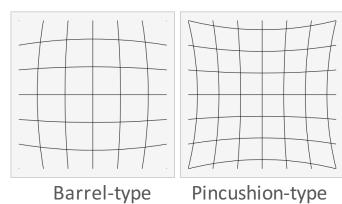
• Solution regarding continuity



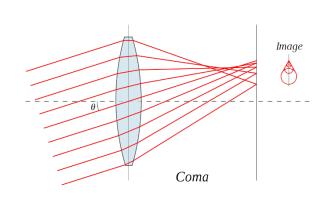


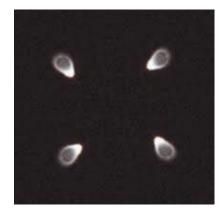
Solving Jigsaw Puzzles

- Chromatic Aberration (色差)
- Distortion (畸变)

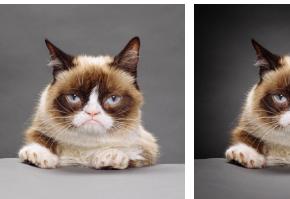


• Coma (彗差)



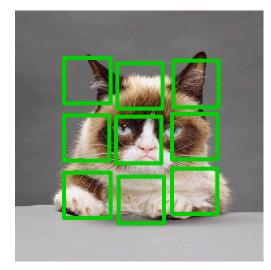


• Vignetting(暗角)

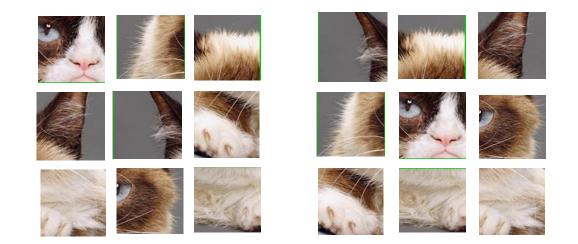


Do not apply heavy vignetting effects in your photos!!!

• Solution regarding aberration



After aberration correction



Solving Jigsaw Puzzles

Ambiguity

• Appearance prior

Image Colorization

Image In-painting

• Physics prior

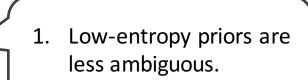
Rotation Prediction

• Motion tendency prior

Motion prediction (Fine-tuned for seg: 39.7% mIoU)

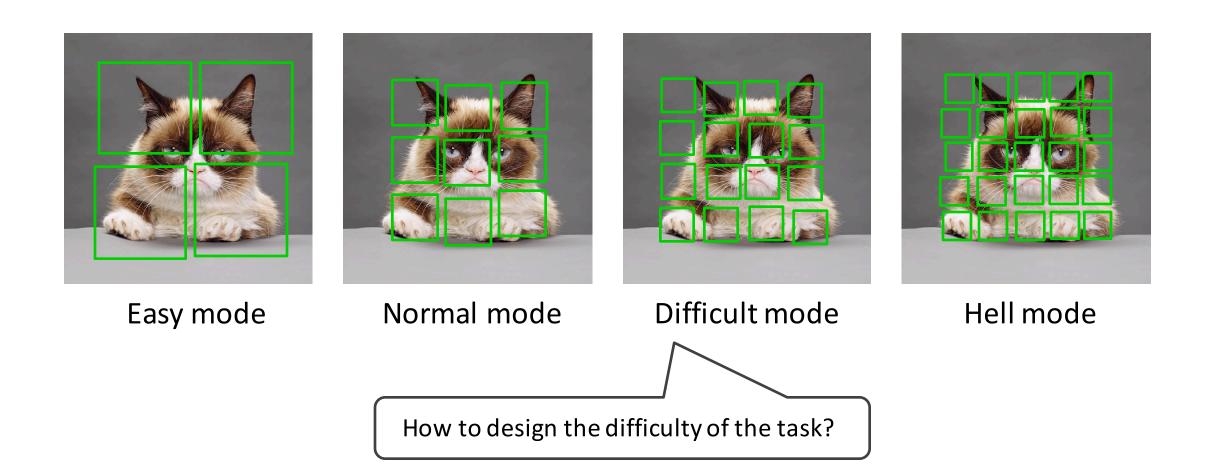
Kinematics prior

Motion propagation (Fine-tuned for seg: 44.5% mIoU)



2. Any other solutions?

Difficulty



open-mmlab/OpenSelfSup

• High-efficiency

💿 Watch	36	🔂 Star	967	೪ Fork	101
---------	----	--------	-----	---------------	-----

- > Distributed & Mixed Precision Training
- Integrity and Extensibility
 - All methods in one framework

Relative Location	Rotation Prediction	Deep Clustering	NPID
ODC	МоСо	SimCLR	BYOL

- Fair Comparisons
 - Standardized benchmarks

Linear	Semi-supervised classification	SVM &	Object
classification		Low-shot SVM	detection

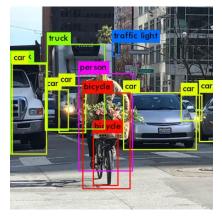
Outlines

- > Why unlabeled data?
- > Supervised face clustering: a new trend
- > Unsupervised representation learning from **object-centric** images
- Self-supervised learning in scene understanding

Scene Understanding

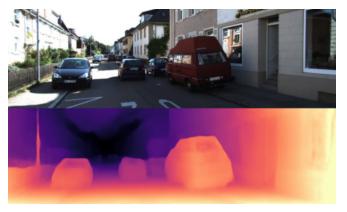
Hotel room Car interior

Hayfield Skyscraper Scene classification



Object detection

Segmentation



Depth estimation

Learning from Motion

- 1. Motion reflects the kinematic properties or physical structures of objects.
- 2. Motion is easy to obtain, without manual annotations.

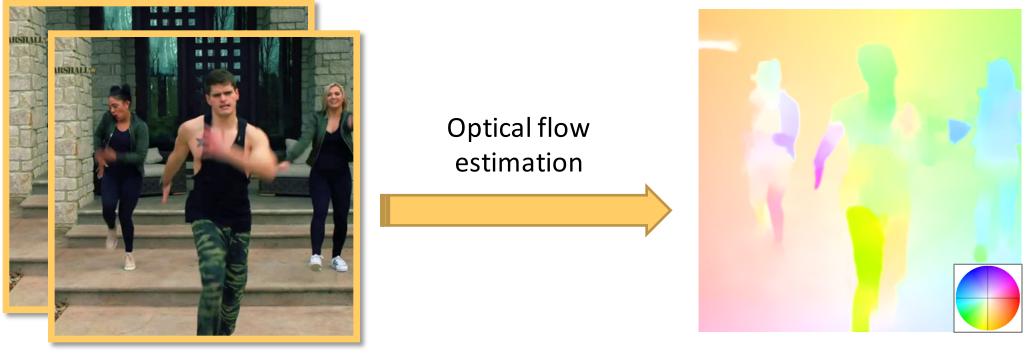


Image pair

Motion (optical flow)

Learning from Motion Tendency Priors

(a) Input Image

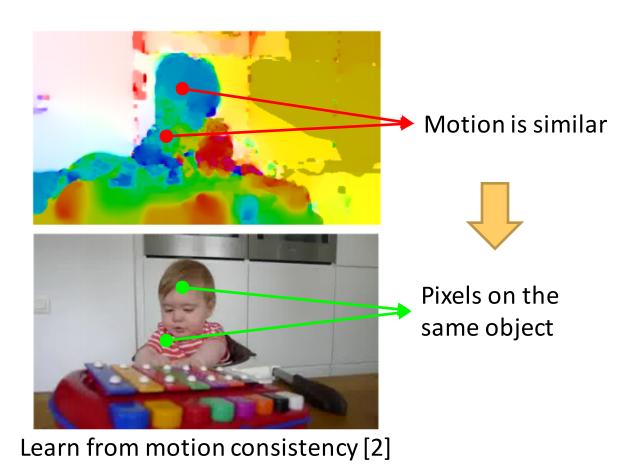
(b) Prediction

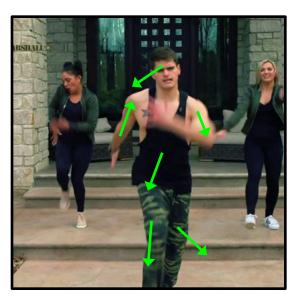
(c) Ground Truth

Motion prediction from static images. [1]

[1] Walker J, Gupta A, Hebert M. "Dense optical flow prediction from a static image." In CVPR, 2015.

Learning from Motion Consistency Priors

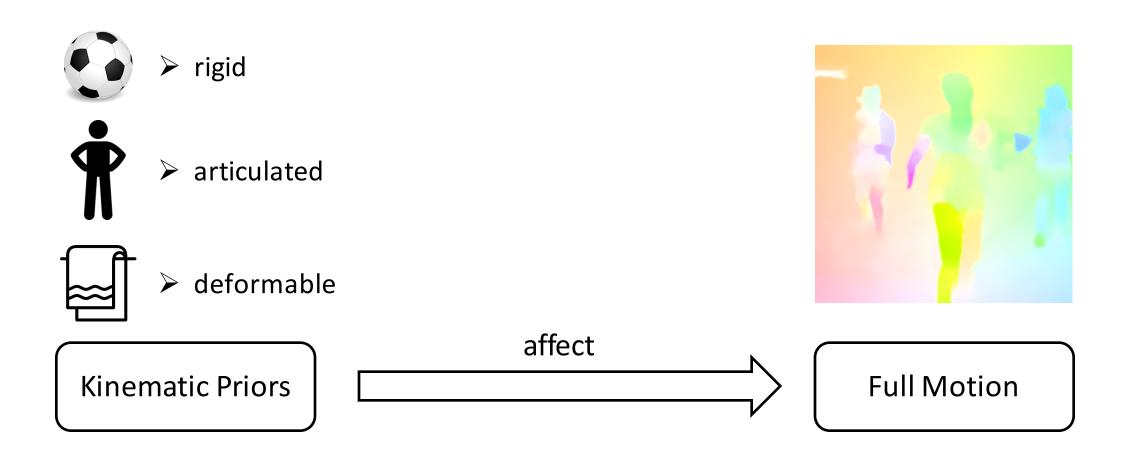




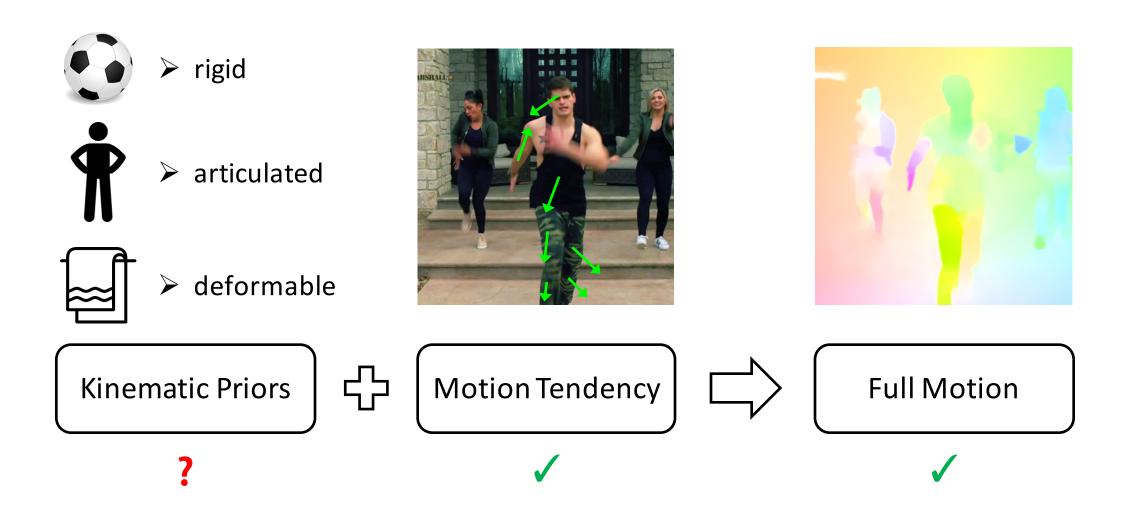
Some objects have high degrees of freedom, e.g., human.

[2] Mahendran A, Thewlis J, Vedaldi A. Cross pixel optical-flow similarity for self-supervised learning. In ACCV, 2018.

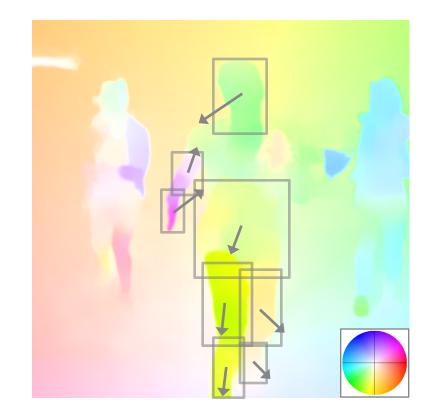
Learning from Kinematic (运动学) Priors



Learning from Kinematic Priors

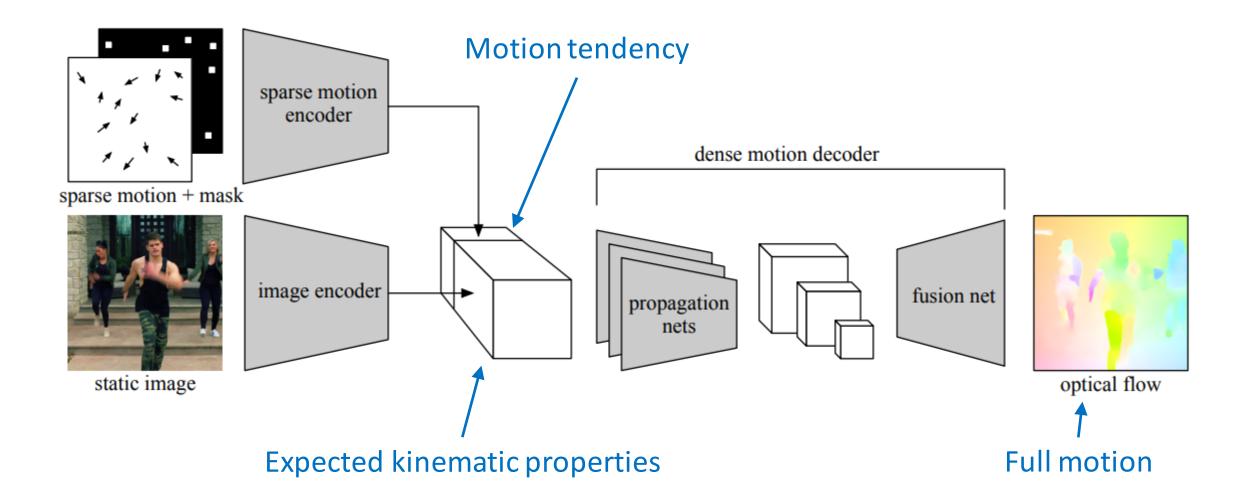


Approximate Motion Tendency



Without the annotation of rigid parts, how to approximate the motion tendency?

Conditional Motion Propagation [CVPR'19]



Conditional Motion Propagation [CVPR'19]

Done

Application: Kinematic-Grounded Video Generation

Application: Kinematic-Grounded Video Generation

Application: Kinematic-Grounded Video Generation

For general objects

Self-Supervised Scene De-occlusion [CVPR'20 Oral]

Real-world scene

Intact objects with invisible parts + ordering graph Background

What We Have

• A typical instance segmentation dataset:

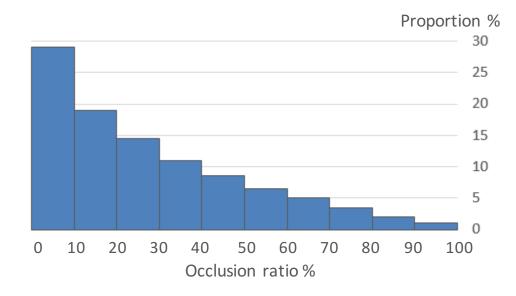
Modal masks & Category labels

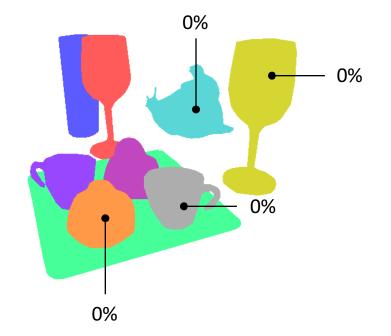
Modal mask

Amodal mask

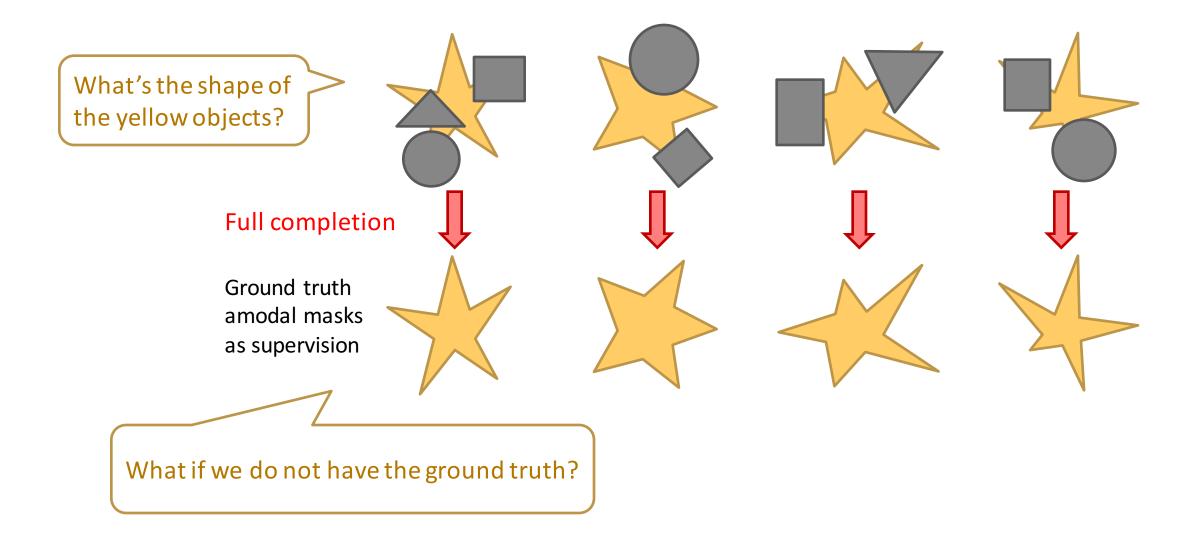
Modality	Available	
Image	V	
Modal mask	V	
Ordering	×	
Amodal Mask	×	

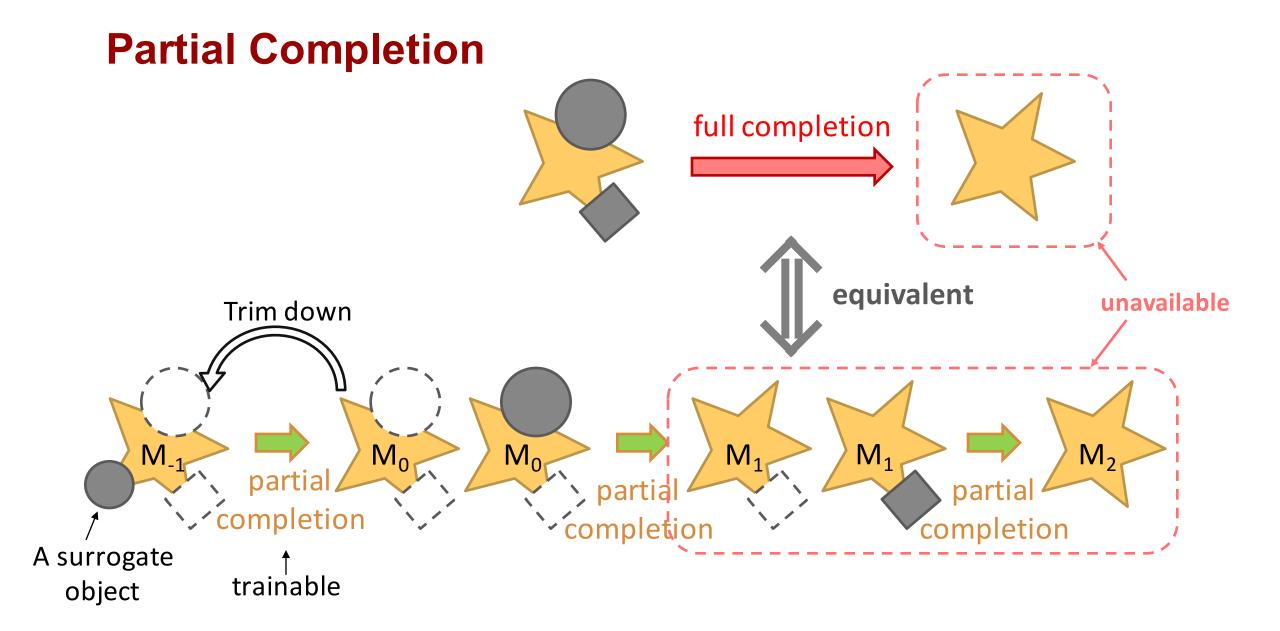
Data Analysis: Occlusion Ratio



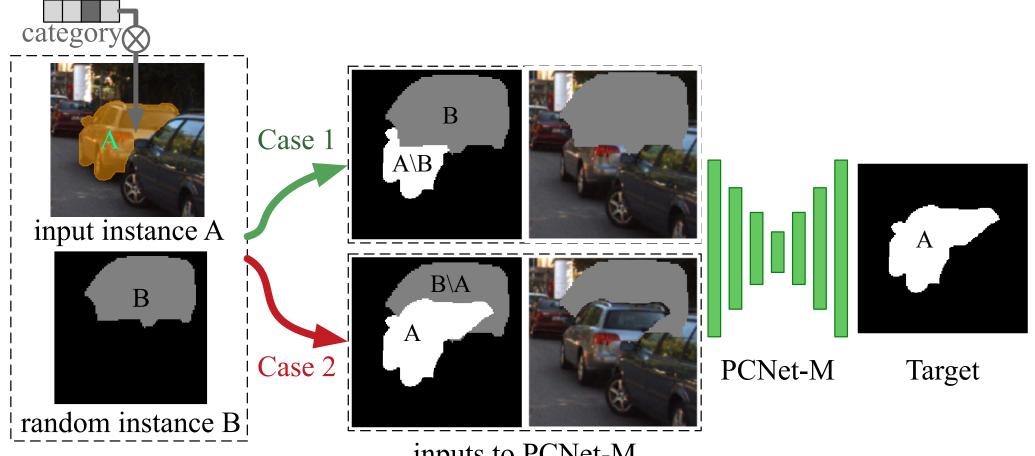


Amodal Completion



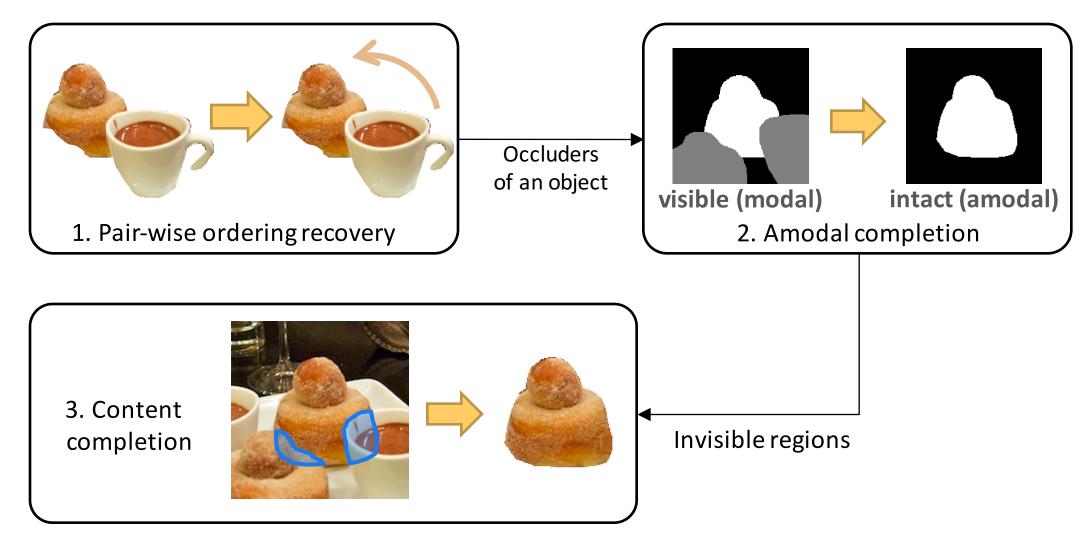


Train Partial Completion Net-Mask (PCNet-M)

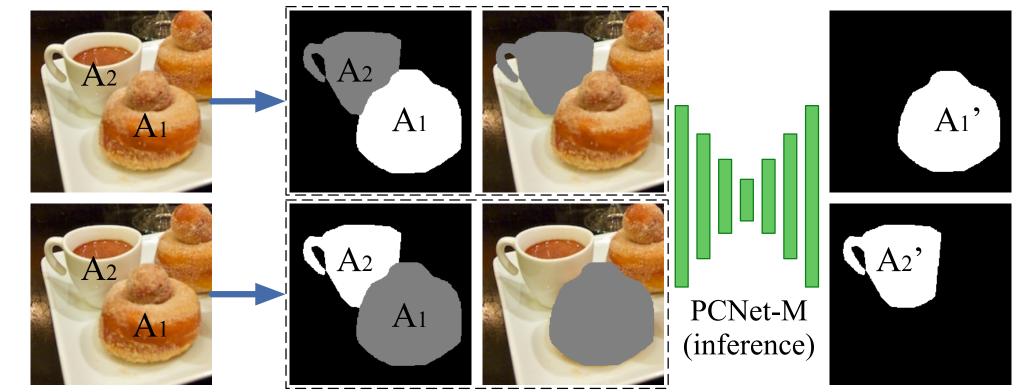


inputs to PCNet-M

Tasks to Solve



Dual-Completion for Ordering Recovery



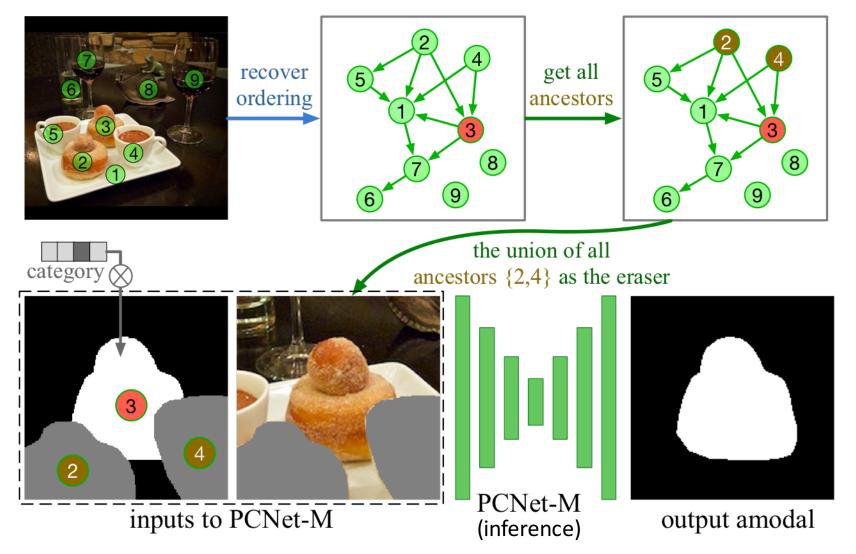
(a) Regarding A1 as the target and A2 as the surrogate occluder, the incremental area of A1: $\Delta A'_1 | A_2$ (b) Regarding A2 as the target and A1 as the surrogate occluder, the incremental area of A2: $\Delta A'_2 | A_1$

Decision: $\Delta A'_1 | A_2 < \Delta A'_2 | A_1 \Rightarrow$ **A1 is above A2**

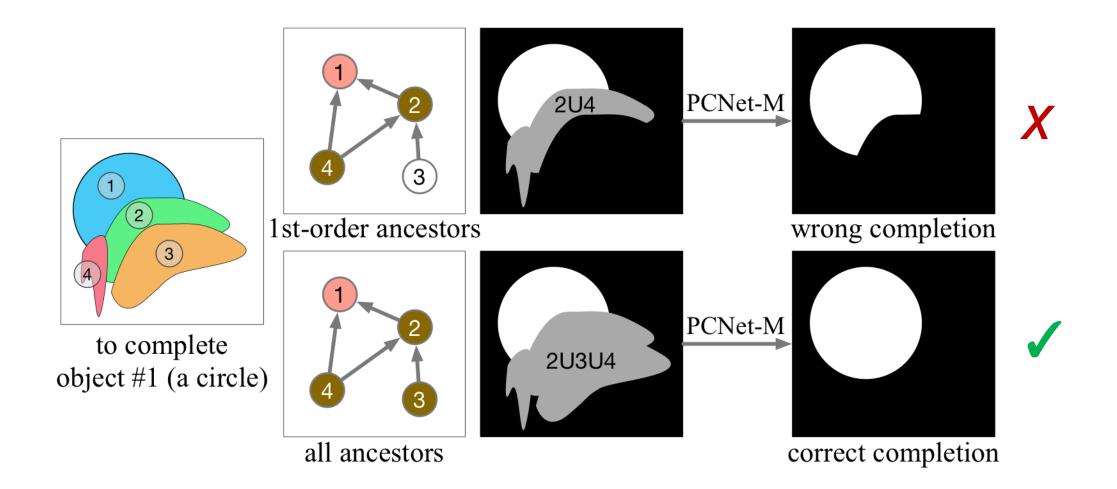
(a)

(b)

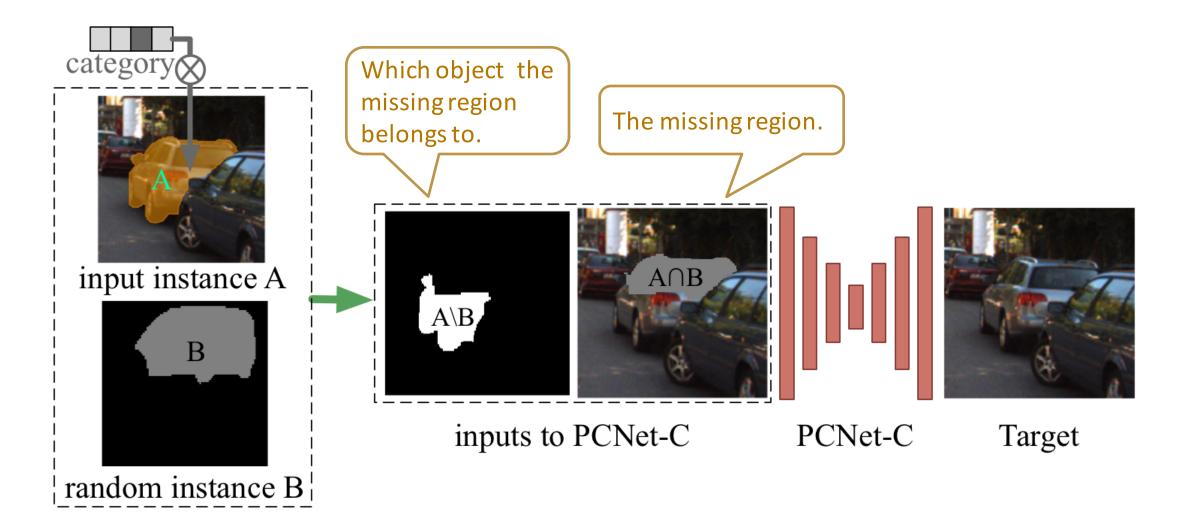
Ordering-Grounded Amodal Completion



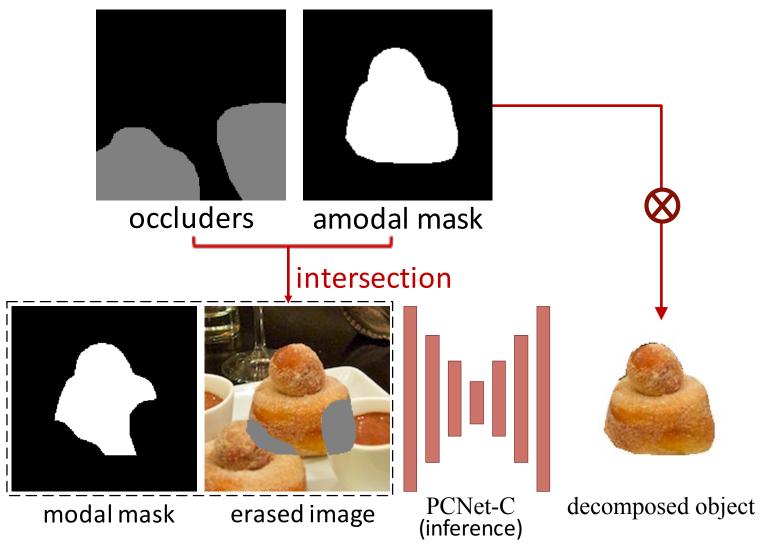
Why All Ancestors?



Train Partial Completion Net-Content (PCNet-C)



Amodal-Constrained Content Completion

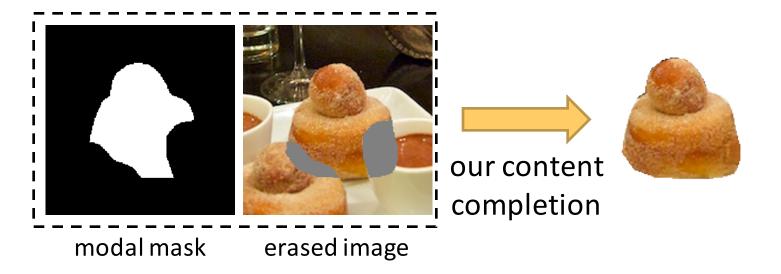


Compared to Image Inpainting

erased image

inpainting

image



Scene De-occlusion



Real-world scene

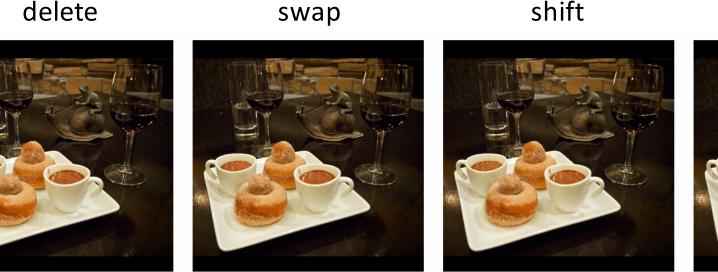
Objects with invisible parts + ordering graph Background

Application: Image Manipulation

delete

modal-based

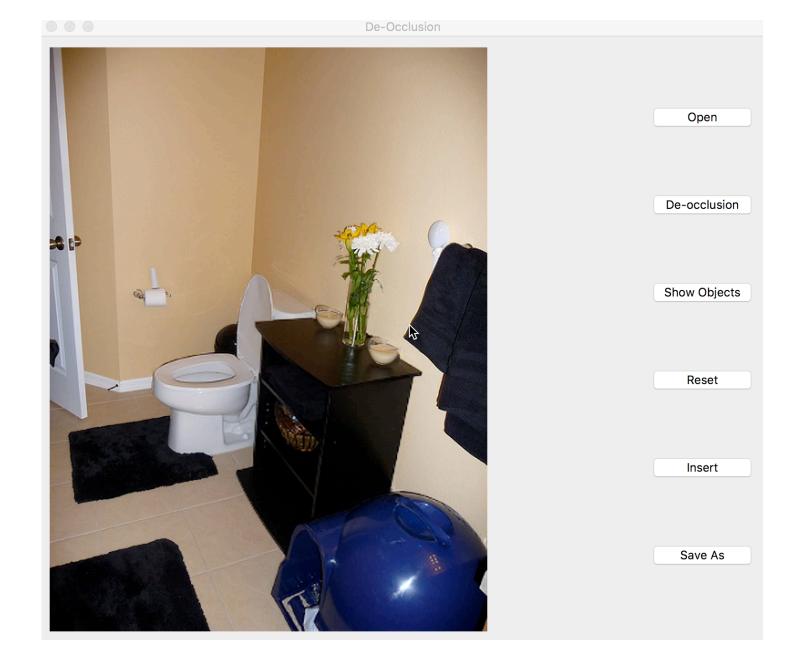
manipulation



shift

before

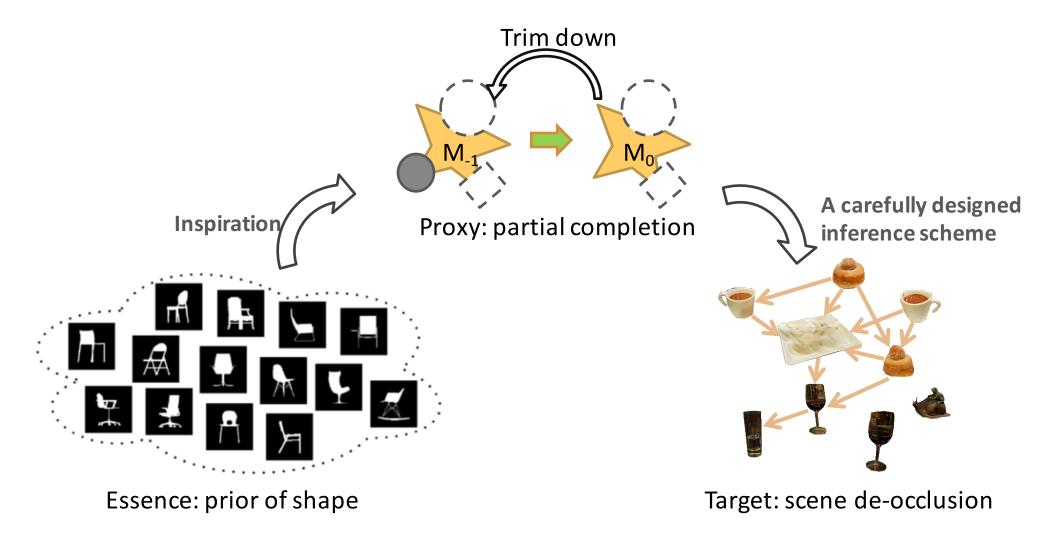
reposition



Future Directions with Scene De-occlusion

- Data augmentation / re-composition for instance segmentation.
- Ordering prediction for mask fusion in panoptic segmentation.
- Occlusion-aware augmented reality.

What's the Intrinsic Methodology?



- 我们的世界不是像素点的简单组合,而是在严格的物理、数学、化学、 生物学、乃至社会学规则/常识下运行的;
- 2 我们观测到的数据是这些规则的外在反映,本身就是有结构、可推理、 可循因溯果的;
- 3. 从大量观测数据中归纳反推常识,不一定需要人工标注的显式监督。

Discussion

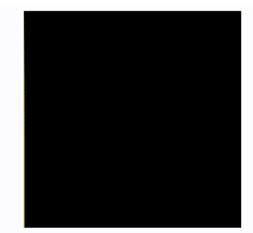
- 1. 还有哪些应用场景需要利用无标注数据?
 - 数据量大: 自然语言处理、图片视频分类、行人车辆监控、……
 - 标注困难:遥感图像、语义分割、深度估计、……
- 2. 半监督学习和聚类的区别是? 利用人脸无标注数据的时候为何要用聚类, 而非半监督?
 - 半监督: 类别固定; 聚类: 类别(identity)是开放集合。
- 3. 举例graph形式的数据有哪些? 用graph相比单点数据的好处是?
 - 社交网络数据、人体骨架、图像中物体关系、电影中人物关系、分子化学结构、……
 - 可表示更多类型的数据、信息更丰富。
- 4. 无标注图片和视频,除了颜色、纹理、朝向,还可以利用哪些prior来进行自监督学习?
 - 对称性(人脸、动物脸、车辆等)、视频和声音的关联性、……

Discussion

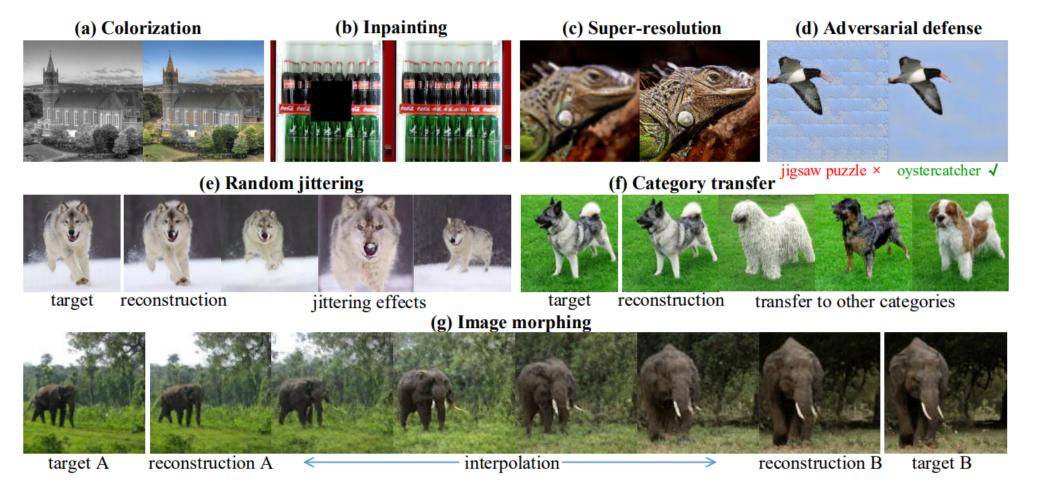
Done

利用Conditional motion propagation 还可以设计什么应用?

Application: Interactive Segmentation



Extensions



Deep Generative Prior [ECCV'20 Oral]

More: xiaohangzhan.github.io