

Self-Supervised Learning via Conditional Motion Propagation

Xiaohang Zhan¹, Xingang Pan¹, Ziwei Liu¹, Dahua Lin¹, Chen Change Loy² ¹The Chinese University of Hong Kong ²Nanyang Technological University

CVPR 2019

Learn from Motion

- Motion: easy to obtain, without manual annotations.
- Goal: learn image representations and object properties from motion.

Optical flow estimation

Motion (optical flow)

Previous Works

Motion prediction

(a) Input Image

(b) Prediction

(c) Ground Truth

Motion prediction from static images. [1]

[1] Walker J, Gupta A, Hebert M. "Dense optical flow prediction from a static image." In CVPR, 2015.

Previous Works

Motion as regularization

Assume pixels on the same object should have similar motion.

Learn to segment moving foreground [2]

Learn motion consistency [3]

[2] Pathak D, Girshick R, Dollár P, Darrell T, Hariharan B. Learning features by watching objects move. In CVPR, 2017.[3] Mahendran A, Thewlis J, Vedaldi A. Cross pixel optical-flow similarity for self-supervised learning. In ACCV, 2018.

Motion is complicated

Do pixels on the same object have similar motion?

Objects with high degrees of freedom

Rigid objects

We need a better paradigm to learn from motion.

How does human imagine motion?

Conditional Motion Propagation

Details

Sparse motion sampling

Flow quantization: regression as classification.

$$L_{x} = -\frac{1}{N} \sum_{\substack{i=1\\N}}^{N} \sum_{\substack{c=1\\C}}^{C} \left(\mathbb{1}(Q_{i}^{x} = c) \log P_{i_{c}}^{x} \right),$$
$$L_{y} = -\frac{1}{N} \sum_{\substack{i=1\\c=1}}^{N} \sum_{c=1}^{C} \left(\mathbb{1}(Q_{i}^{y} = c) \log P_{i_{c}}^{y} \right)$$

 L_x, L_y : loss in x, y direction. *Q*: quantized flow. *P*: probability.

Codes and demos

<u>https://github.com/XiaohangZhan/conditional-motion-propagation</u>

